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Abstract—The moving target defense (MTD) that proactive-
ly changes series reactance of transmission lines has recently
been proposed as an effective defense approach to resist false
data injection attacks in smart grids. However, the defense
effectiveness analyses of MTD in existing research are mainly
focused on linear DC state estimation. To bring the state-of-
the-art research to practice, MTD for AC state estimation is
investigated in this paper. Specifically, based on a thorough
analysis, an extended MTD (EMTD) approach that coordinately
changes series reactance and parallel susceptance of lines in smart
grids is proposed to improve the traditional MTD. Moreover, the
impact of EMTD on electricity market is analyzed. On this basis,
the variation of locational marginal price, the variation of active
power loss and the cost of devices for executing EMTD are treated
as the cost of system defense. Furthermore, to find the trade-off
between the defense effectiveness and the cost of EMTD, optimal
construction of cost-minimization EMTD topology parameter
scheme and defense time interval are also proposed. Finally,
extensive simulations are conducted on the standard IEEE test
system to demonstrate the effectiveness of the proposed approach.

Index Terms—False data injection attack, moving target de-
fense, electricity market, smart grid.

I. INTRODUCTION

False data injection (FDI) attacks are one of the most
destructive types of malicious attacks for smart grids, which
utilize the topology and parameter information of smart grids
to design attack strategies and tamper with measurement data
[1]. By designing attack vectors using complete or even incom-
plete system information, FDI attacks can be launched against
both DC and AC state estimation while keeping stealthy to the
bad data detection (BDD) mechanism [2]–[5]. Attackers can
modify the estimated states by compromising measurements
in SCADA system, causing severe consequences such as key
lines overloading and load shedding [6].

To defend against FDI attacks, moving target defense (MT-
D) that proactively perturbs the series reactance of transmis-
sion lines using distributed flexible AC transmission system
(D-FACTS) devices has been proposed. Since its introduction,
MTD has drawn increasing attention of researchers. [7] and [8]
early proposed to proactively change the topology parameters
of smart grids to detect ongoing FDI attacks. [9] combined
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the concept of MTD with changing topological parameters
and proposed a randomly-generated MTD scheme where the
series reactance on an arbitrary subset of D-FACTS equipped
lines can be randomly changed. [10] pointed out powerful
attackers can notice the existence of MTD and thus proposed
a hidden MTD to improve the stealthiness of MTD, based on
which [11] analyzed the optimal D-FACTS devices planning of
hidden MTD. Considering the voltage stability, [12] proposed
a deeply-hidden MTD to hide both the self and mutual
reactance of lines in the unbalanced distribution system. [13]
designed a converter-based MTD by proactively perturbing the
primary control gains to defend against deception attacks in
DC microgrids. [14] utilized MTD to detect stealthy Stuxnet-
like attacks that constructed based on the knowledge of the
systems configuration.

Since the core of the MTD’s defense effectiveness is to
proactively disturb smart grids such that attackers can not
exploit the right system parameters to construct attack vec-
tors, recent researches have been devoted to analyzing the
defense effectiveness of MTD. [15] analyzed the relationship
between the completeness of MTD and the system topology,
then concluded MTD has the capability in thwarting all FDI
attacks under certain conditions. [16] showed the necessary
and sufficient condition for three types of FDI attacks being
detectable is that the branches covered by D-FACTS devices
should contain at least a spanning tree of the grid graph.
[17] proposed novel D-FACTS placement algorithms that can
achieve the maximum MTD effectiveness with the minimum
number of D-FACTS devices. [18] proposed a game theory
method to minimize the defense cost while ensuring safety.
However, most of the above analyses are based on DC state
estimation and the impact of MTD on electricity market has
not been considered. Besides, the relationship between the
defense effectiveness and the defense cost of MTD has also
not been fully investigated.

In response to above discussions, this paper proposes a
MTD scheme for AC state estimation in smart grids. Specif-
ically, an extended MTD (EMTD) approach that coordinately
changes series reactance and parallel susceptance is proposed
to enhance the defense effectiveness of traditional MTD (TMT-
D). The impact of EMTD on electricity market is analyzed,
then the variation of electricity price, the variation of active
power loss and the cost of devices for executing EMTD are
treated as the cost of EMTD. To find the trade-off between
the defense effectiveness and the cost of EMTD, optimal con-
struction methods of EMTD topology parameter scheme and
defense time interval are proposed. Finally, the effectiveness
of the proposed EMTD is verified on the standard IEEE test
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system. Particularly, the main contributions of this paper are
summarized as follows:

• MTD’s effectiveness to detect FDI attacks is analyzed
based on the more practical AC state estimation. Based
on the analysis, EMTD that coordinately changes series
reactance and parallel susceptance is proposed. We prove
that the defense effectiveness of EMTD can be stronger
than that of TMTD both in the sense of state estimation
residual and Kullback Leibler Distance (KLD), where
the corresponding comparison results are presented in the
case studies.

• Possible effects of EMTD bringing to smart grids such
as transmission power and voltage drop variations are
discussed, according to which rationality constraints are
thus proposed to avoid the adverse effects. In particular,
we analyze the impact of EMTD on locational marginal
price (LMP). Then the variation of LMP, the variation of
active power loss and the cost of devices for executing
EMTD are used as defense cost to design optimal EMTD.

• An EMTD-based ACOPF model with the objective of
minimizing cost of EMTD while ensuring sufficient de-
fense effectiveness is proposed. Considering the problem
is non-convex and nonlinear, the particle swarm optimiza-
tion (PSO) algorithm is used to solve the optimal EMTD
scheme. Furthermore, the optimal defense time interval
for executing EMTD is derived by minimizing the sum of
the single defense cost and the estimated adverse effects
caused by the forthcoming attack.

The rest of this paper is organized as follows. Section II
introduces some preliminaries. Section III designs EMTD and
derives the rational constraints. Section IV presents details
on the construction of the optimal EMTD scheme. Section
V conducts simulations on the standard IEEE test system and
Section VI concludes the paper.

II. PRELIMINARIES

A. AC State Estimation and BDD

The AC power system model is used for formulation and
analysis in this paper, while most existing analyses on MTD
are based on the DC model where reactive power flows and
injections, as well as the parallel charging susceptance are
ignored.

In smart grids, the processing object of state estimation is
a high-dimensional system on a time section, and the least
square method is generally adopted. The nonlinear measure-
ment equation of the system can be expressed as

z = h(x) + e, (1)

where z is the measurement vector; h(·) is the nonlinear
measurement equation; x is the state variable composed of
the amplitude and phase angle of bus voltage; e is the

measurement error. h(x) can be expressed as

h(x) =



Pij

Qij

Pi

Qi

Ui

 , i = 1, 2, · · · , N ; ∀j ∈ Ωi, (2)

where Pij is the active power flow from bus i to bus j, Qij is
the reactive power flow from bus i to bus j, Pi is the active
power injection of bus i, Qi is the reactive power injection
of bus i, Ui is voltage amplitude of bus i, and Ωi is the set
of buses connected to bus i. Given the measurements in z,
the result of state estimation is the value x̂ that minimizes the
following objective function

J(x) = [z − h(x)]TR−1[z − h(x)], (3)

where R is a diagonal matrix whose elements are noise
variances of measurements. The first-order optimal condition
for this model can be written as [19]:

HT (x̂)R−1[z − h(x̂)] = 0, (4)

where H is the Jacobian matrix of h(x) and details about
how to solve the nonlinear equation (4) can be found in [20].

BDD is one of the important functions of state estimation.
The system operators use the redundant information provided
by SCADA system to judge and process bad data, that is, the
following 2-norm estimation residual

r = ||z − h(x̂)||2
= ||h(x)− h(x̂) + e||2

(5)

with a predefined η are utilized. If r > η, the measurements
are considered to be contain bad data; otherwise, the mea-
surements are considered to be normal. In general, when the
measurement noises follow the normal distribution N(0, σ2),
the threshold η can be taken as [10]

η = σ
√
χ2
α(m− n), (6)

where α is the confidence in hypothesis testing, m is the
number of measurements used for state estimation and n is
the number of system state variables.

B. False Data Injection Attack
FDI attacks generally construct an attack vector a as [21]:

a = h(x̂+ c)− h(x̂), (7)

where c is the injected false data set by the attacker. After
attacker launches FDI attacks, the tampered measurement data
za received by control center is

za = z + a

= z + h(x̂+ c)− h(x̂).
(8)

The corresponding residual is

ra = ||za − h(x̂a)||2
= ||z + h(x̂+ c)− h(x̂)− h(x̂a)||2
= ||z − h(x̂)||2
= r,

(9)
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where x̂a = x̂ + c is the false state. From equation (9) it is
clear that, the residual ra under FDI attacks is the same as the
residual r without attacks, so the FDI attacks are stealthy and
will not trigger the BDD mechanism.

C. Moving Target Defense

After system executes MTD, the topology parameters
change, and the measurement equation changes accordingly.
Since attackers do not have the latest system topology infor-
mation and use the old topology information to construct the
attack vector. The current state of the system estimated by
attackers is

x̂′ = argmin
x

[z′ − h(x)]TR−1[z′ − h(x)]

= argmin
x

[h′(x′)− h(x) + e]TR−1[h′(x′)− h(x) + e],

(10)
where (·)′ represents the values after executing MTD. Because
h′(·) and h(·) are not equal, an error is introduced into x̂′

and transmitted to the attack vector. It is worth noting that
the current topology parameter of the system is h′(·) while
the attacker uses h(·) to construct a′, so another error is
introduced. These two errors continue to be transmitted to
z′
a = z′+h(x̂′+c)−h(x̂′) and the resulting residual becomes

r′a = ||z′
a − h′(x̂′

a)||2
= ||z′ + h(x̂′ + c)− h(x̂′)− h′(x̂′

a)||2.
(11)

It is obvious that the introduced errors can lead to the residual
r′a greater than r, therefore the system may be able to detect
an attack by executing MTD.

III. EXTENDED MOVING TARGET DEFENSE

In this section, based on the defense principle of MTD
for AC state estimation, a more flexible and powerful MTD
scheme—EMTD is proposed. Further, the possible effects
of EMTD on smart grids are discussed and the rationality
constraints are proposed to avoid the adverse effects.

A. Extended MTD for AC State Estimation

In this paper, we suppose all transmission lines and trans-
formers are modeled with a standard π transmission line
model, with series impedance R + jX and parallel charging
susceptance Bc. In order to be consistent with idiomatic usage,
we sometimes use admittance G + jB = 1/(R + jX) rather
than series impedance B (is the series susceptance), e.g., in
power flow equations.

Since most existing researches only use D-FACTS devices
to change the series reactance X of transmission lines to
realize MTD and rely on DC state estimation, the following
EMTD is proposed to improve TMTD.

Definition 1. EMTD coordinately changes the series reactance
X and parallel susceptance Bc of transmission lines.

Proposition 1. The defense effectiveness of EMTD to resist
FDI attacks can be stronger than that of TMTD.

Proof: The items in h(x) are expressed as

Pij = U2
i Gij − UiUj(Gij cos θij + Bij sin θij),

Qij = UiUj(Bij cos θij −Gij sin θij)− U2
i (Bij + Bijc),

Pi =
∑
j∈Ωi

Pij ,

Qi =
∑
j∈Ωi

Qij ,

Ui = Ui.
(12)

In view of G + jB = 1/(R + jX), the change of Xij will
lead to the change of Gij and Bij . According to formula (12),
the items in h′(x) after system executes TMTD are expressed
as

P ′
ij = U2

i G
′
ij − UiUj(G

′
ij cos θij + B′

ij sin θij),

Q′
ij = UiUj(B

′
ij cos θij −G′

ij sin θij)− U2
i (B

′
ij + Bijc),

P ′
i =

∑
j∈Ωi

P ′
ij ,

Q′
i =

∑
j∈Ωi

Q′
ij ,

U ′
i = Ui,

(13)
while the items in h′(x) after system executes EMTD are
expressed as

P ′
ij = U2

i G
′
ij − UiUj(G

′
ij cos θij + B′

ij sin θij),

Q′
ij = UiUj(B

′
ij cos θij −G′

ij sin θij)− U2
i (B

′
ij + Bijc

′),

P ′
i =

∑
j∈Ωi

P ′
ij ,

Q′
i =

∑
j∈Ωi

Q′
ij ,

U ′
i = Ui.

(14)
According to formula (12)-(14), the difference between the
measurement variation |h(·)−h′(·)| is introduced by Q′

ij and
Q′

i. As Q′
i =

∑
j∈Ωi

Q′
ij , we thus focus on Q′

ij . In high
voltage transmission systems, the voltage amplitude difference
at both ends of a line and the phase angle are small, i.e.,
cos θij ≈ 1 and sin θij ≈ 0. Then Q′

ij after executing EMTD
is

Q′
ij ≈ UiUjB

′
ij − U2

i (B
′
ij + Bijc

′), (15)

and Q′
ij after executing TMTD is

Q′
ij ≈ UiUjB

′
ij − U2

i (B
′
ij + Bijc). (16)

As
Qij ≈ UiUjBij − U2

i (Bij + Bijc), (17)

then |Qij −Q′
ij | after executing EMTD is

|Qij −Q′
ij | ≈|UiUj(Bij − B′

ij)− U2
i (Bij − B′

ij)

− U2
i (Bijc − B′

ijc)|,
(18)

and |Qij −Q′
ij | after executing TMTD is

|Qij −Q′
ij | ≈ |UiUj(Bij − B′

ij)− U2
i (Bij − B′

ij)|. (19)
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It is clear that EMTD has one more controllable item
−U2

i (Bijc−B′
ijc) in |Qij−Q′

ij | compared with TMTD. When

U2
i (Bijc − B′

ijc)× [UiUj(Bij − B′
ij)− U2

i (Bij − B′
ij)] < 0,

(20)
the changes of Bijc will increase the changes on Qij , causing
possible increases for |h(·)− h′(·)|.

Noting (11), it is indicated the residual of state estimation
of EMTD can be larger than that of TMTD. That is, for the
same attack and defense magnitude, the possibility that EMTD
detects the attack can be greater. In other words, EMTD
can further increase the state estimation residual by improving
flexibility and controllability of system defense compared with
TMTD, thereby reducing missed detection.

In essence, EMTD introduces more degrees of freedom and
its search space completely includes TMTD, i.e., TMTD is a
special case of EMTD. Under the constrains in Subsection
III-C, EMTD can do much more than TMTD, which will
be shown in Section V. Whether an attack can be detected
heavily depends on what the attack scheme x̂a is, which is
uncontrollable for defenders. What defenders can do is to
increase the possibility of detecting malicious attacks, and that
is the motivation for proposing EMTD. The attack detection
probability of TMTD and EMTD are presented in subsection
V-A, which shows EMTD is much more powerful.

Besides state estimation residual, KLD of system mea-
surement variation is also used to detect FDI attacks in AC
state estimation by measuring the distribution inconsistency
[22]. Specifically, for distribution of measurement variation
q(x) from the historical data and distribution of measurement
variation p(x) between the current time step and the previous
time step, the KLD is defined as

D(p||q) =
∑
x

p(x)ln
p(x)

q(x)
. (21)

Noting (1) that h(x) and h′(x) are directly related to distribu-
tion of measurement variation p(x). Therefore, after executing
MTD, if the attacker uses the old topology information to
construct attack vector a, the KLD may be significantly larger
than that without executing MTD and EMTD can be more
effective than TMTD.

According to capabilities of the compensation equipment
in smart grids, we give the realization instructions of EMTD
in transmission networks, where the system operator can
regulate the series reactance X and parallel susceptance Bc of
lines simultaneously to execute EMTD. Specifically, flexible
AC transmission system (FACTS) devices such as thyristor
switched capacitors (TSC) and thyristor controlled reactors
(TCR) deployed in important substations are used to regulate
the parallel susceptance Bc of lines. D-FACTS devices such as
small-capacity distributed static serial compensators (DSSC)
deployed on lines are used to regulate the series reactance X.
The parameters of transmission lines and the implementation
of EMTD are shown in Fig.1.

Bus i Bus j
Rij+Xij 

(change with DSSC)

Bijc
(change with 

TSC and TCR)

Bijc
(change with 

TSC and TCR)

Fig. 1. The parameters of transmission lines and the implementation
of EMTD

B. Possible Effects Induced by Executing EMTD

EMTD detects FDI attacks by changing topological parame-
ters X and Bc of the system, which may cause adverse effects
to the system. This subsection analyzes possible adverse
effects, where we take the increase of X and the decrease
of Bc for examples.

First, we analyze the effects caused by the increase of X,
e.g., the increase in voltage drop of some lines.

• During electric energy flows from the generator to the
load, the voltage drop across a line is [23]

∆U =
PdR + (Qd −QC)X

U
, (22)

where Pd is active power demand of the load, Qd is
reactive power demand of the load, QC is the inductive
reactive power emitted by the equivalent charging capac-
itor C at ends of the line. After executing EMTD, if the
line series reactance X increases, it will cause the line
voltage drop to increase

∆UX =
(Qd −QC)×∆X

U
= ∆

(Qd −QC)X

U
. (23)

Next, we analyze the effects caused by the decrease of Bc,
e.g., the increase in transmission power and voltage drop of
some lines.

• Equipment such as transformers and induction motors
consume inductive reactive power, which is sent from
generators and substations equipped with reactive power
compensation devices and flows through the lines. As
Bc = ωC and ω is the angular frequency, the equivalent
charging capacitor C will change when system executes
EMTD. As QC = ωCU2, a decrease in C will leads to a
decrease in QC . At this time, generators need to send out
more reactive power, i.e., ∆Q = ω×∆C×U2, where ∆C
is the reduction of capacitance C. And the extra reactive
power ∆Q will flow through the lines, i.e., leading to a
increase in transmission power of some lines.

• If the capacitance C is reduced, transmission lines will
deliver extra reactive power to the load, which will further
cause the line voltage drop to increase as

∆UC = ω ×∆C × U ×X = ∆
QCX

U
. (24)

Since Quantity Breeds Quality, when the changes of X and
Bc are large enough, the voltage drop across the line will
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affect the power quality. Take rated voltage as U0. In smart
grids, the normal operating range of bus voltage is generally
[0.95U0, 1.05U0]. According to formula (23) and (24), if the
increase of X satisfies ∆X > 0.05U2

0 /(Qd − QC) or the
decrease of Bc satisfies ∆Bc > 0.05/X, the line voltage
drop will increase by 5%. And the voltage of the bus at
the end may less than 0.95U0, which can destroy the normal
operation of smart grids or even cause accidents. Therefore,
defenders must avoid to cause these negative effects and the
corresponding constraints on rational EMTD are presented in
the next subsection.

C. Rational EMTD and Its Properties

In order to avoid the adverse effects mentioned above as
well as not yet mentioned, this subsection defines the rational
EMTD and presents the corresponding rationality constraints.

Definition 2. A rational EMTD scheme ensures smart grids
operate normally after it is executed.

The Definition 2 means that after executing EMTD, smart
grids should keep important physical quantities unchanged and
satisfy all system operation constraints under new topological
parameters:

• In order to ensure the power quality, the voltage ampli-
tude of PV buses and the slack bus should be maintained,
and the voltage amplitude of other buses should be kept
near the rated value, e.g., [0.95U0, 1.05U0].

• In order to ensure system safety, safety constraints such
as the bounds on line transmission power and generator
output have to be satisfied.

Consider a smart grid with N buses and L lines, among
which M buses are PQ buses, N − M − 1 buses are PV
buses and the remaining bus is a slack bus. It is inferred
that the rational EMTD has 2N − 1 equality constraints for
power balance equation and the detailed expressions of the
constraints in polar coordinates are

pgi − pdi = Ui

∑
j∈Ωi

Uj(Gij cos θij + Bij sin θij)

= U ′
i

∑
j∈Ωi

U ′
j(G

′
ij cos θ

′
ij +G′

ij sin θ
′
ij),

i ∈ PQ buses ∪ PV buses

qgi − qdi = Ui

∑
j∈Ωi

Uj(G
′
ij sin θij − B′

ij cos θij)

= U ′
i

∑
j∈Ωi

U ′
j(G

′
ij sin θ

′
ij − B′

ij cos θ
′
ij),

i ∈ PQ buses

Ui = U ′
i , i ∈ PV buses ∪ slack bus,

(25)
where pgi, qgi represent the active and reactive power output
of generator at bus i, and pdi, qdi represents the active and
reactive power demand at bus i. It is noted that there are 2L+
N +M − 1 unknowns in the rationality problem, that is, 2L
adjustable topological parameters of EMTD, which are the
series reactance X and parallel susceptances Bc of L lines;
and N +M − 1 unknowns in state variables of the system,

which are voltage phase angles of N − 1 buses except for the
slack bus and voltage amplitude of M PQ buses.

In most smart grids, each bus is connected to at least
one line, so a smart grid with N buses has at least N − 1
lines, i.e., L > N − 1. Therefore, the number of unknowns
2L + N + M − 1 is bigger than the number of equality
constraints 2N − 1, which means the rationality problem is
under-determined and must have multiple solutions without
considering the inequality constraints. The expressions of
inequality constraints are

hkf 6 Limitk, k = 1, 2, · · · , L (26)

hkt 6 Limitk, k = 1, 2, · · · , L (27)

Umin
i 6 Ui 6 Umax

i , i = 1, 2, · · · , N (28)

pmin
gi 6 pgi 6 pmax

gi , i = 1, 2, · · · , N (29)

qmin
gi 6 qgi 6 qmax

gi , i = 1, 2, · · · , N, (30)

where formula (26)-(30) are bounds on the power hkf trans-
mitted at the beginning of line k, the power hkt transmitted at
the end of line k, the voltage amplitude Ui of bus i, the active
output pgi of the generator at bus i, and reactive output qgi of
the generator at bus i, respectively.

The defender can test whether an EMTD scheme is rational
by Algorithm 1, and the selection of the optimal defense
scheme is discussed in Section IV.

Algorithm 1 Rationality Verification for EMTD

Input: topology and topology parameters X, Bc of system
after executing EMTD; measured values with noises,
including power injections Pi of PQ and PV buses, Qi

of PQ buses and voltage magnitude Ui of PV and slack
buses

Output: True or False
1: construct the node admittance matrix Y ′ with X, Bc and

topology of the system;
2: use Pi of PQ and PV buses, Qi of PQ buses, Ui of PV

and slack buses and Y ′ to calculate AC power flow;
3: get the physical quantities at this operating point of

system: power flow hkf , hkt, voltage magnitude Ui, active
and reactive output of generator pgi, qgi

4: substitute the physical quantities into the inequality con-
straints (26)-(30);

5: if all inequality constraints are satisfied then
6: return True;
7: else
8: return False;
9: end if

IV. CONSTRUCTION OF OPTIMAL EMTD

In this section, the impact of EMTD on the electricity
market is analyzed and treated as part of the cost of EMTD.
Considering the defense cost and effectiveness of EMTD
comprehensively, an optimal problem is established for solving
cost-minimization EMTD topology parameters and defense
time interval while ensuring sufficient defense effectiveness.
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A. Impact of EMTD on Electricity Market

In deregulated electricity markets, FDI attacks may lead to
financial improprieties by making a false virtual bidding [24].
Powerful attacks not only bypassing bad data detection in the
state estimation but also disguising the compromised LMP
as regular LMP to avoid market operators’ alerts [25]. With
MTD, the defender can effectively detect FDI attacks, thus
preventing these economic crimes.

This paper considers the day-ahead electricity market [26]
where LMP is widely adopted. For ACOPF-based LMP in
[27], a general model for the ACOPF has the form

min
pgi,qgi,Ugi

fac(pgi, qgi, Ugi; pdi, qdi,C) (31)

s.t. pgi − pdi − hPi(pgi, qgi, Ugi; pdi, qdi,C) = 0

i = 1, 2, · · · , N
(32)

qgi − qdi − hQi(pgi, qgi, Ugi; pdi, qdi,C) = 0

i = 1, 2, · · · , N
(33)

(26)− (30), (34)

where Ugi is the voltage amplitude of generator at bus i, C is
the production cost of electricity; fac(pgi, qgi, Ugi; pdi, qdi,C)
represents total generation cost, hPi(·) is the active power
injection of bus i while hQi(·) is the reactive power injection,
and (32) and (33) are the corresponding constraints. The LMP
of each node is the Lagrange multiplier λi of the equality
constraint (32) (see (35) and (36)).

ψ = fac(pgi, qgi, Ugi; pdi, qdi,C)−
N∑
i=1

λi

×
(
pgi − pdi − hPi(pgi, qgi, Ugi; pdi, qdi,C)

)
∂ψ

∂pgi
= 0

∂ψ

∂qgi
= 0

∂ψ

∂Ugi
= 0



⇒ LMP,

(35)

ψ′ = fac(p
′
gi, q

′
gi, U

′
gi; p

′
di, q

′
di,C

′)−
N∑
i=1

λ′i

×
(
p′gi − p′di − h′Pi(p

′
gi, q

′
gi, U

′
gi; p

′
di, q

′
di,C

′)
)

∂ψ′

∂p′gi
= 0

∂ψ′

∂q′gi
= 0

∂ψ′

∂U ′
gi

= 0



⇒ LMP′,

(36)
where ψ is generalized Lagrange function, (·)′ represents the
value after executing EMTD.

After executing EMTD, the series reactance X and parallel
susceptance Bc of the line will change. The coefficients of

power injection equations (32) of the buses with FACTS
devices or connected to the lines with D-FACTS devices
will change accordingly. As a result, the LMP of each node
will also change as (35) to (36). Variations in LMP caused
by executing EMTD will directly affect transactions in the
electricity market, and we will show the specific impact in
section V-B.

B. Cost of system defense

According to the analysis in Section IV-A, the LMP of
each node will change after executing EMTD, and these
changes will affect the operation of electricity market. In
order to protect the interests of the buyer and the seller in
electricity markets, MTD is expected to affect LMP as weakly
as possible. Therefore, this paper regards the change of LMP
as indirect economic cost of system defense. And the metric
to measure the impact of MTD on LMP is defined as the sum
of the absolute values of LMP changes of all buses before and
after system executing MTD.

∆LMP =

N∑
i=1

|∆LMPi| , (37)

where ∆LMPi is the LMP variation of node i before and
after executing EMTD.

In addition, this paper regards the change of active power
loss and equipment adjustment costs as direct economic costs
of system defense. The overall active power loss is

Ploss =
L∑

k=1

[(U2
i + U2

j )Gk − 2UiUjGk cos θij ], (38)

where Gk is the equivalent series conductance of line k. After
system executes EMTD, series reactance Xk will change,
which means Gk will change accordingly. Therefore, the
system operator can reduce active power loss while defending,
i.e., performing operating mode optimization. The variation of
the active power loss is

∆Ploss = P ′
loss − Ploss, (39)

where Ploss and P ′
loss are the active power loss before and

after executing EMTD, respectively.
An EMTD regulates topological parameters by FACTS and

D-FACTS devices, and the price of common FACTS devices
is generally a quadratic function of their rated capacity [28].
Therefore, considering the loss of devices when using them,
this paper uses the quadratic function of parameter variations
to describe economic cost of using devices, that is,

Costeq = e1∆X2 + e2∆b2c , (40)

where e1 and e2 are the cost coefficients.

C. Construction of Cost-minimization EMTD Scheme

Attack detection capability is always the most
important characteristic for EMTD. When constructing
the cost-minimization EMTD scheme, its defense
capability must be ensured. In this paper, the
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attack detection probability(ADP ) is used as quantitative
metric of defense capability of MTD/EMTD [10].

ADP =
number of attcks being detected

number of all attacks
(41)

As the lower bound of attack detection capability of EMTD,
the optimal scheme should satisfy ADP > α, where α is the
confidence in formula (6).

Considering the defense cost and defense effect compre-
hensively, an EMTD-based ACOPF model is proposed to
construct the cost-minimization EMTD scheme, in which the
series reactance X and parallel susceptance Bc of lines are
introduced as decision variables. The EMTD-based ACOPF
model with the objective of minimizing the total cost while
ensuring sufficient defense effectiveness is formulated as

min
Xk,Bck,pgi,qgi

∆LMP + l∆Ploss + Costeq (42)

s.t. ADP > α (43)

Xmin
k 6 Xk 6 Xmax

k , k = 1, 2, · · · , L (44)

Bmin
ck 6 Bck 6 Bmax

ck , k = 1, 2, · · · , L (45)

(25)− (30), (46)

where decision variable Xk is the series reactance and Bck

is the parallel susceptance of the k-th line, respectively. l is
a regulation coefficient for active power loss. The inequality
constraint (43) enforces sufficient effectiveness to defend a-
gainst FDI attacks, i.e., guarantees the ADP is greater than the
confidence α in formula (6), where (43) can also be written as
P(r′a(Xk,Bck, pgi, qgi) > η) > α here. Inequality constraints
(44) and (45) are bounds on physical capacity of FACTS/D-
FACTS devices.

Since objective function (42) and constraints (43), (46) are
non-convex and nonlinear, it is difficult to solve the above
optimal problem. Meanwhile, there are lots of attack-defense
simulations for each point, where the gradient of objective
function is not available. Thus, the traditional solvers are not
suitable for this problem and we turn to artificial computational
methods. In this paper, the PSO algorithm is utilized to solve
the optimal problem. Define the fitness function as

ϕ(Xk,Bck, pgi, qgi)

=∆LMP + l∆Ploss + Costeq

+ ζ1max(0, α− P(r′a(Xk,Bck, pgi, qgi) > η))

+ ζ2

L∑
k=1

max(0, hkf (Xk,Bck, pgi, qgi)− Limitk)

+ ζ2

L∑
k=1

max(0, hkt(Xk,Bck, pgi, qgi)− Limitk)

+ ζ3

N∑
i=1

[max(0, Ui − Umax
i ) +max(0, Umin

i − Ui)]

+ ζ4

G∑
g=1

[max(0, pgi − pmax
gi ) +max(0, pmin

gi − pgi)]

+ ζ5

G∑
g=1

[max(0, qgi − qmax
gi ) +max(0, qmin

gi − qgi)]

+ ζ6

L∑
k=1

[max(0,Xk −Xmax
k ) +max(0,Xmin

k −Xk)]

+ ζ7

L∑
k=1

[max(0,Bck − Bmax
ck ) +max(0,Bmin

ck − Bck)],

(47)
where ζ1 ∼ ζ7 are non-negative penalty coefficients. The
value of fitness function is the basis for determining the best
global position and the best personal position of each particle.
The solution of (47) is the cost-minimization EMTD topology
parameters.

D. Optimization of The Defense Time Interval

It is obvious that the smaller the time interval between
two defenses, the shorter the average attack duration, and
the higher the total cost of smart grids. In order to balance
the defense cost and effect, this subsection seeks the optimal
defense time interval according to economic cost of a single
defense and economic loss that a FDI attack is expected to
impose on smart grids.

The cost of a single defense has been analyzed in section
IV-B. In what follows, we analyze the economic losses that a
FDI attack is expected to impose on smart grids. In general,
the longer the FDI attack duration, the greater economic loss
smart grids will suffer. Because defender cannot foresee when
FDI attacks will be launched, this paper uses the average attack
duration instead.

1) The average attack duration: An alert attacker can find
the execution of EMTD and stop the attack [10]. After reac-
quiring new topology information and subjectively waiting for
a period of time, the attacker will launch an attack again. Take
the last time the defender executed EMTD and successfully
detected FDI attacks as starting time t0 = 0. Assume each
EMTD is effective and the attacker will launch attacks again
at ta with ta ∼ U(0, Tamax), where Tamax can be obtained
based on long-term observation of attackers’ behaviors. Taking
the defender’s defense time interval as td, the average attack
duration can be calculated as

• If td > Tamax, EMTD must be able to detect the attack
during [0, td], and the average time system T affected by
a FDI attack is

T = Eta [td − ta]

= td −
Tamax

2
.

(48)

• If td < Tamax, EMTD may not detect the attack during
[0, td]. When Tamax/2 6 td 6 Tamax, the attack may be
detected by the current EMTD or the next one. Therefore,

T =Eta [td − ta|0<ta<td]
+ Eta [2td − ta|td<ta<Tamax]

=2td −
t2d

Tamax
− 0.5Tamax.

(49)
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Similarly, when Tamax/(n+1) 6 td 6 Tamax/n for any
n > 1,

T = (1 + n)td −
n(n+ 1)t2d
2Tamax

− 0.5Tamax. (50)

2) Estimate of the adverse effects caused by the forthcom-
ing attack: The defender is capable of identifying specific
attack plan, e.g., through reactance perturbation [29]. After a
defender gets previous attack plan, he/she can evaluate adverse
effects accordingly. For the sake of generality, this paper uses
the false data c injected by attackers to measure the adverse
effects. Specifically, the larger the injected false data c, the
more false system state xa deviates from the real state and
the more serious consequences attacker may bring to smart
grids. The behavior pattern of the same attacker usually has
certain rules, hence the average effects of multiple attacks are
used to estimate the adverse effect caused by FDI attacks. The
estimated value of the adverse effect is

fae(T , csum) = fae(T ,
W∑
j=1

(
2N−1∑
i=1

βi × cij)), (51)

where W is the window size of historical attack times used
to estimate the effect of the forthcoming attack, βi is the
weight coefficient used to measure the importance of i-th state
variable and cij is the false data injected into i-th state variable
in the j-th attack.

3) Optimization of defense time interval: According to the
economic cost of a single defense and the estimated adverse
effect of the forthcoming attack, the following objective func-
tion is used for the optimization of defense time interval

min
td

µ1
costEMTD

td
+ µ2

fae(T , csum)

td
(52)

s.t. Tdmin 6 td 6 Tdmax, (53)

where costEMTD is the solution of objective function (42) in
section IV-C, Tdmin is the minimum defense time interval that
determined by functional recovery period of devices; Tdmax

is the maximum defense time interval. The objective function
(52) represents the total attack effects and defense cost of
smart grids per unit time, and the solution is the time for next
execution of EMTD, i.e., the optimal defense time interval t∗d.

The construction of optimal EMTD is described as Algo-
rithm 2.

V. CASE STUDIES

In this section, the case studies conducted on the IEEE 9-
bus system in MATPOWER [30] are provided to demonstrate
the proposed method.

A. Effectiveness Comparison of EMTD and TMTD

This subsection evaluates the effectiveness of EMTD and
compares it with that of the TMTD, where the ADP , the
average estimation residual and KLD are used as evaluation
metrics.

For a defense magnitude qm, set Xmax
k = (1 + qm)Xk,

Bmax
ck = (1 + 2.5qm)Bck, Xk

min = (1 − qm)Xk, and

Algorithm 2 Construction of optimal EMTD

Input: topology and topology parameters X, Bc; measured
values with noises, including power injections Pi of PQ
and PV buses, Qi of PQ buses and voltage magnitude Ui

of PV and slack buses; LMP of all buses; coefficients
mi, i = 1, 2, · · · , N ; l; e1, e2; ζl, l = 1, 2, · · · , 7

Output: optimal EMTD parameters X∗, B∗
c and defense time

interval t∗d
1: use Pi, Qi, Ui, X, Bc and topology of the system to

calculate AC power flow and get Ploss;
2: solve the optimal problem in (47) using PSO algorithm

and get X∗, B∗
c ;

3: do Detection Effectiveness Verification for EMTD accord-
ing to formula (43) and get the result flag1;

4: if flag1 == False then
5: increase ζ1 and go back to step 2;
6: end if
7: do Rationality Verification for EMTD according to Algo-

rithm (1) and get the result flag2;
8: if flag2 == False then
9: increase ζ2-ζ7 and go back to step 2;

10: end if
11: optimize defense time interval according to formula (52),

(53) and get t∗d;
12: output X∗, B∗

c and t∗d.

Bmin
ck = (1− 2.5qm)Bck. In practice, 20% is a typical setting

for qm, 70% is achievable [31] and a larger regulation range
requires stronger parameter changing capabilities accordingly.
Therefore, we vary qm from 5% to 40%. The measurement
errors are sampled from the normal distribution N(0, σ2) with
σ = 0.01. We construct the attack as follows: choose a vector
c and then compute the false states xa = x + c and false
measurements h(xa). The c’s elements are sampled from
the uniform distribution U(−d

2 ,
d
2 ), where d characterizes the

magnitude of attack. It is easy for defenders to detect sudden
and large changes in measurements. In order not to alert
the defender, the attacker may gradually increase the attack
magnitude from a small value until the target is reached. In
the simulation, we set d = 0.02, 0.05, 0.10, which represent
all stages of the attack process. Confidence α=0.95, m=45,
n=17. For each defense magnitude, 4000 random multi-bus
attacks and defenses are tested.

Fig.2 shows the ADP of EMTD and TMTD under different
defense magnitudes in IEEE 9-bus, from which it is clear that
EMTD performs better than TMTD in most cases. In addition,
it is observed that the detection effectiveness of EMTD and
TMTD increases along with the defense magnitude. The
farther the false state xa deviates from the real state, the
more likely it is to be detected by EMTD and TMTD. The
performance of MTD to detect FDI attacks mainly depends
on whether it can distinguish real attacks from noise. The bad
scenario of TMTD is when the attack and noise are particularly
similar, i.e., d = 0.02, 0.05, and EMTD performs better at this
time. This means that EMTD can detect attacks earlier than
TMTD. Fig.3 shows the average estimation residual r under d-
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ifferent defense magnitudes. When the system doesn’t execute
MTD, the system average residual r under attack is very small.
As analyzed in section III-A, after executing EMTD or TMTD,
the system residual r will significant increase. Besides, the r
for EMTD is obviously greater that that of TMTD, verifying
the claim that EMTD improves the system’s effectiveness of
detecting attacks compared with TMTD.
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Fig. 2. Attack detection probability of EMTD and TMTD

Since when a FDI attack is launched, the KLD of system
measurement variation will increase. For the attack whose
false data is 5% to 10% of the real system state, it can be
easily detected. However, the false data less than 1% of the
real system state can not be effectively detected [32]. In what
follows, we use KLD as the metric to show TMTD and EMTD
can detect FDI attacks with tiny false data, i.e., magnitudes
less than 1% of the real system states, and show the detection
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Fig. 3. Average estimation residual of EMTD and TMTD

performance of EMTD outperforms that of TMTD. The test
system in this part is the same as that in [22], where the load
data are based on the New York independent system operator
(NYISO) from February 2021. There are 8236 measurement
time points, of which the data of the 1st to 4000th mea-
surement are used as historical data while the rest are used
to construct real time measurements. In this experiment, the
attacker only tamper with the voltage magnitude of bus 2 and
the false data cU2 = −0.001, which is about 0.1% of the real
value of U2. Set Xmax

k = (1+qm)Xk, Bmax
ck = (1+3qm)Bck,

Xk
min = (1−qm)Xk, and Bmin

ck = (1−3qm)Bck here, where
qm varies from 10% to 30%. Considering that the distribution
of KLD in this scenario is similar to the the long-tailed
distribution [22], we use the median of KLD as the evaluation
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metric such that the center change of KLD distribution can be
described accurately.

Fig.4 shows the median of KLD of system measurement
variation for various attack and defense cases. It is observed
that the median of KLD in the case of no defense and under
attack is very close to the case of no defense and no attack,
thus it is difficult to detect this kind of FDI attack. After
executing MTD and EMTD, the median of KLD significantly
increases when smart grids are under attack and EMTD
performs better than TMTD, which is in accordance with our
claim. Moreover, it is noted from the curves that executing
TMTD and EMTD don’t affect the median of KLD when there
is no attack, implying system defense will not influence the
false alarm rate in the sense of KLD.
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Fig. 4. The median of KLD for various attack and defense cases

Fig.5 shows the lowest voltage amplitude under different
parameter change ratios for EMTD and TMTD in IEEE 9-bus
system. Take rated voltage as U0, the normal operating range
of bus voltage as [0.95U0, 1.05U0], and parameter change ratio
as rp. Under the condition of ∆X = rpX for TMTD/EMTD
and ∆Bc = −rpBc for EMTD, the lowest voltage amplitude
of the system decreases with the increase of rp. When the
changes of X and Bc exceed 40% for EMTD and the change
of X exceeds 80% for TMTD, the voltage of some buses will
be out of the normal operating range, i.e., Umin 6 0.95U0.
To avoid the adverse effect, defenders must check the defense
scheme with Algorithm 1 in the subsection III-C.

B. Verifications of cost-minimization EMTD

This subsection first verifies the impact of EMTD on LMP,
then compares the effects of random EMTD and optimal
EMTD (TABLE I), showing the effectiveness of the proposed
cost-minimization EMTD. Meanwhile, the cost of TMTD and
EMTD are also compared (TABLE II).

Fig.6 shows the ∆LMP increases with the defense mag-
nitude of EMTD and TMTD in IEEE 9-bus system, which
together with the Fig. 2 implies the ∆LMP increases with
the defense effectiveness of EMTD and TMTD in IEEE 9-
bus system. Since system defenders expect to achieve desired
defense effectiveness while resulting in the minimal ∆LMP ,
it is clear that there exists a trade-off according to Fig.6.
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Fig. 6. ∆LMP in IEEE 9-bus system

Therefore, when choosing the defense scheme, the defender
has to consider the impact of defense on LMP.

To solve the optimal cost-minimization EMTD scheme, the
parameters in the PSO algorithm is chosen as follows. The
swarm size is 150, the function tolerance is 0.01, the self
adjustment weight is 1.49, and the social adjustment weight is
1.49. In addition, defense magnitude qm is 20%, the weight of
LMPi variations mi = 200, penalty coefficients ζ1 ∼ ζ7 = 10
and the coefficient of active power loss l is set to the value
of LMP of the slack bus. 100 attack-defense simulations are
conducted in each step for each particle to verify the detect
capability. On the other hand, the cost of FACTS devices
is generally higher than that of D-FACTS devices in smart
grids [33]. This paper considers transmission network, where
FACTS devices are used to change parallel susceptance Bc

and D-FACTS devices are used to change series reactance X.
Therefore, the economic cost of changing Bc is higher than
that of changing X and we set e1 = 100, e2 = 500. The rest
parameters such as upper and lower limits in simulations are
directly taken from the standard test system.

After calculation, the best values of the fitness function (47)
show a downward trend and the minimum cost is 1.72. The
overall active power loss of the original system is 4.64MW,
nevertheless after changing topology parameters according
to the solved optimal scheme, the overall active power loss
is 4.61MW. The results show the cost-minimization EMTD
scheme optimizes the active power loss while ensuring the
security of the smart grid. Meanwhile, the verification shows
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TABLE I. LMP of each node before and after executing EMTD

Bus number before defense after defense 1 variation 1/% after defense 2 variation 2/% after optimal defense variation 3/%

1 24.7557 24.7610 0.0213 24.7573 0.0066 24.7556 -0.0004
2 24.0345 24.0248 -0.0404 24.0301 -0.0183 24.0330 -0.0062
3 24.0759 24.1032 0.1131 24.1053 0.1222 24.0765 0.0025
4 24.7559 24.7618 0.0240 24.7589 0.0121 24.7559 0.0000
5 24.9985 25.0183 0.0791 25.0165 0.0719 24.9984 -0.0004
6 24.0759 24.1032 0.1131 24.1053 0.1222 24.0765 0.0026
7 24.2539 24.2642 0.0426 24.2713 0.0718 24.2517 -0.0090
8 24.0345 24.0274 -0.0298 24.0325 -0.0085 24.0330 -0.0062
9 24.9985 25.0215 0.0921 25.0331 0.1383 24.9984 -0.0002

the obtained EMTD scheme satisfies the rationality constraints.
Table I presents the LMP before and after defense, showing the
designed cost-minimization EMTD has much smaller impact
on the LMP (the defense 1 and defense 2 are random).

The comparison of costs of TMTD and EMTD under
different attack magnitudes is shown in the table II. For each
attack magnitude, the cost of defense is optimized with (42)-
(46). With the increase of attack amplitude, the difficulty of
detecting attacks decreases gradually, so the cost of MTD also
decreases gradually. Due to the greater freedom of EMTD, the
impact of EMTD on LMP is less than TMTD, and it can better
optimize the active network loss. Therefore, the cost of EMTD
is lower than that of TMTD.

TABLE II. Costs of TMTD and EMTD under different attack
magnitude

d = 0.03 d = 0.05 d = 0.07

TMTD 1.8202 1.7811 0.8675
EMTD 1.7680 1.7249 0.8309

Reduction/% 2.8678 3.1553 4.2190

Next, we demonstrate the selection of optimal defense
time interval based on the optimal cost solved above, and
present the comparison results. For most attack targets such
as overloading key lines to cause physical disasters [34],
the economic losses of smart grids increase with the attack
duration. Therefore, we express formula (51) as:

fae(T , csum) =

T
2 ×

W∑
j=1

(
2N−1∑
i=1

βi × cij)

W
,

(54)

where the window size W is 10, the βi of each bus is 1, the
average value of cij is 0.1, and the cost of a single defense is
1.71. According to the mean time of attacks in [35], we take
Tamax as one month, and set the time unit of the simulation
results as month. Take the weight for cost of a single defense
per unit time as µ1 = 1, and take the weight for adverse effect
per unit time as µ2 = 10. Considering that the defense interval
in engineering practice is usually an integer number of days,
we round the solutions. According to formula (52)-(54) and
the above parameters, we can get the optimal defense time
interval is 0.5 month.

The following shows the effectiveness of the above optimal
defense time interval is 0.5 month by calculating the total cost

of the defender over a long period of time. In the experiment,
the adverse effects of FDI attack imposed on the system are
calculated using the time that the system is actually affected
by attack, which is shown in the following formula:

fae(T , csum) = tactual
2 × (

2N−1∑
i=1

βi × ci). (55)

In addition, the attack and defense scenarios are settled as:
• Attacker makes 10,000 consecutive FDI attacks, and

attack time interval ta ∼ U(0, Tamax).
• Defender 1 defends at the optimal time interval which

varies according to the method proposed above.
• Defender 2 defends at a fixed time interval td = 0.25

month.
• Defender 3 defends at a fixed time interval td = 0.75

month.
• Defender 4 defends at a fixed time interval td = 1 month.
• Defender 5 randomly selects the time interval for each

defense with td ∼ U(0, Tamax).
Fig. 7 shows the total cost of defenders over a long period

of time. It is observed that the total cost of defender 1 who
uses the method proposed in this paper to select the defense
time interval is the smallest, and the total costs of other
defenders are obviously much larger. Therefore, the defense
time interval optimization model proposed is effective, and
the proposed optimal approach can help defenders choose the
cost-minimization EMTD scheme.

1 2 3 4 5
number of defender

3

4

5

6

7

8

to
ta

l c
os

t

104

Fig. 7. The total cost of defender i (i = 1, 2, · · · , 5)
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VI. CONCLUSION

This paper has investigated MTD in terms of thwarting
stealthy FDI attacks with the AC power flow model. An EMTD
approach has been designed to enhance the defense capability
of smart grids for AC state estimation. Rationality constraints
are proposed to avoid possible adverse effects of EMTD on
smart grids. Moreover, the impact of EMTD on the electricity
market, active power loss, and device costs are regarded as
system defense costs. EMTD topology parameter scheme and
defense time interval are optimized with the objective of
minimizing system defense costs while ensuring sufficient
defense effectiveness. Simulations are carried out to validate
and illustrate the theoretical approach.
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